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Abstract: Heat conduction is investigated on three levels: equilibrium, Fourier, and Cattaneo. The Fourier
level is either the point of departure for investigating the approach to equilibrium or the final stage in the in-
vestigation of the approach from the Cattaneo level. Both investigations bring to the Fourier level an entropy
and a thermodynamics. In the absence of external and internal influences preventing the approach to equi-
librium the entropy that arises in the latter investigation is the production of the classical entropy that arises
in the former investigation. If the approach to equilibrium is prevented, then the entropy that arises in the
investigation of the approach from the Cattaneo level to the Fourier level still brings to the Fourier level the
entropy and the thermodynamics even if the classical entropy and the classical thermodynamics are absent.
We also note that vanishing total entropy production as a characterization of equilibrium state is insufficient.

Keywords: non-equilibrium thermodynamics, heat transfer, constitutive relations, entropy production, dis-
sipation potential

1 Introduction

Macroscopic systems that are free fromexternal forces and fromexternal and internal constraints reach states,
called equilibrium states, at which their behavior is found to be well described by the classical equilibrium
thermodynamics (ET). This is the experimental observation on which ET stands. For one component macro-
scopic systems, the variables parametrizing the equilibrium states are the volume V , the number of moles N,
and the energy E. Amore detailed investigation of the time evolution bringing themacroscopic systems to the
equilibrium states (i. e., a more detailed investigation of the process of preparation of macroscopic systems
for ET) reveals that the time evolution describing it is driven by a potential. This potential, if evaluated at
the asymptotically reached equilibrium states, becomes the equilibrium entropy S(ET). The preparation pro-
cess thus plays two roles: (i) it brings the macroscopic systems to equilibrium states where ET is applicable,
and (ii) it also determines the fundamental thermodynamic relation S(ET) = S(ET)(V ,N ,E) in which the in-
dividual nature of macroscopic systems is expressed in ET. Formally, we represent the process of preparing
macroscopic systems to ET by the diagram

M

ET (1)
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where M represents the mesoscopic theory on which the preparation process is observed. The dynamics
involved in (1) will be called reducing dynamics.

Historically, the first mathematical formulation of (1) was made by Boltzmann withM being the kinetic
theory (with one particle distribution function playing the role of state variables) and with the Boltzmann ki-
netic equation governing the time evolution equation. The mathematical structure extracted from the Boltz-
mann equation and frommany other well-investigated examples of the passage (1) was identified in [1], in [2]
(that was presented at the AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences
on Fluids and Plasmas: Geometry and Dynamics, held at the University of Colorado, Boulder, CO, USA, 17–23
July 1983), and in [3–9]. In [7, 8] it has been called GENERIC. The potential generating (1) is calledM → ET en-
tropy. If this entropy is evaluated at the state reached in the preparation process, it becomes the equilibrium
entropy S(ET).

Let us now consider two mesoscopic theories: M and m. Both are assumed to be well established and
the mesoscopic theory m is more macroscopic than M. We say that m is more macroscopic (or equivalently
less microscopic) thanM if some details seen inM are not seen inm. We say that a mesoscopic theory is well
established if its consequences agree with experimental observations from which the theory sprang out. For
example, we can think ofM as being the kinetic theory andm as fluid mechanics. Note that the experimental
observations on which M is based are different from those on which m is based. Since both M and m are
well established, it must be possible to prepare the macroscopic systems for the mesoscopic theory m. The
preparation process (the reducing dynamics)

M

m (2)

has to be seen inM.
It has been suggested in [10] that themathematical structure collected inGENERIC (i. e., themathematical

structure extracted from investigations of many examples of the passage (1)) also applies, with an appropri-
ate adjustment, to the passage (2). The structure has been called in [10] CR-GENERIC. The reducing dynamics
describing mathematically (2) is also driven by a potential that is interpreted as an (M → m)-entropy. If this
potential is evaluated at the asymptotically reached state (i. e., the sates arrived by completing the prepara-
tion process) it becomes an entropy on the level “m,” denoted S(Mm). The main objective of this paper is to
investigate this type of entropy.

In order to be able to put the entropy S(Mm) into the context of theM → ET entropy and S(ET) entropy that
we encountered in the investigation of the passage (1), we consider three well-established theoriesM,m, and
ET and investigate relations depicted in the diagram

M

m

ET (3)

Wenote that the passage (3) canbemade only for systems that are allowed to reach the equilibrium level “ET”
while the passage (2) can also be made for open (externally forced) systems that are prevented by external
influences to reach the level “ET.” As an example we recall the Rayleigh–Bénard system (a horizontal layer
of a fluid heated from below). It is well established that the observed behavior of this system can be well
described on the level of fluid mechanics (by Boussinesq equations). If we thus take the level “m” to be the
level of fluid mechanics and the level “M” to be a more microscopic level (e. g., the level of kinetic theory),
then the passage (2) does exist. However, the passage (3) cannot be made since the external forces, namely,
the temperature gradient and the force of gravitation, prevent the approach to thermodynamic equilibrium

Brought to you by | Tsinghua University
Authenticated | caoby@tsinghua.edu.cn author's copy

Download Date | 5/26/19 3:00 PM



M. Grmela et al., Entropy and Entropy Production in Multiscale Dynamics | 3

states. We shall see in Section 6 that in the context of (3), the entropy S(Mm) is the production of them → ET
entropy.

In this paper we illustrate the passages (1), (2), and (3) on the particular example in which the system
under investigation is a rigid heat conductor, the level “M” is the Cattaneo theory, and the level “m” is the
Fourier theory. Because of the recent realization [11] that a still more microscopic description on what we call
an extended Cattaneo level (“M”) is very pertinent, we include it in our analysis in Section 7.

Before entering into details of the illustration, we make a comment about general versus specific formu-
lations of the passages (1), (2), and (3). As we already noted in the context of the passage (1), the first was
the Boltzmann equation representing a particular example of (1). The general (GENERIC) formulation has
appeared later when trying to formulate in abstract mathematical (in particular geometrical) terms a com-
mon structure extracted from the Boltzmann equation and many equations addressing (1) (e. g., the Navier–
Stokes–Fourier equations). Having nowGENERIC, all the particular examples of (1) can be regarded as its par-
ticular realizations. However, every new realization is very important for the following three reasons. First, it
connects GENERIC with a particular physical context and thus brings a new insight into the physical content
of the abstract concepts introduced in GENERIC. Second, it provides a new motivation and a new guide for
a further development of the general formulation. Third, it contributes to the particular theory discussed in
the illustration by bringing a unification that allows to benefit from results and physical insights obtained
in other fields. For instance, we shall see later that the Hamiltonian structure is one element of the element
of GENERIC. This then means that all the results obtained for abstract Hamiltonian systems are immediately
available.

In this paper we put into focus the CR-GENERIC structure of the passage (2). There are much fewer well-
studied examples of (2) than of (1). Illustrations are thus particularly important. All the passages appearing in
(1), (2), (3) are formulatedand investigated in the settingof the rigid-bodyheat conduction. Thegeneral formu-
lation of GENERIC and CR-GENERIC (which can be found in [12]) makes its bottom-up appearance implicitly
as a common structure of all the passages. We discuss below all the passages in a way that their common
structure is manifestly visible. The unified analysis of equilibrium, Fourier, Cattaneo, and extended Cattaneo
levels, as well as of their relations, represents also a new contribution to the physics of heat conduction. To
the best of our knowledge, a systematic and unified investigation of four levels and passages among them is
made in this paper for the first time.

2 Equilibrium theory: ET

We limit ourselves to processes in which the volume V and the number of moles N remain unchanged. Here-
after, we therefore omit V and N and consider only the energy E as the state variable in ET. The physical
system under consideration is thus a rigid heat conductor. The fundamental thermodynamic relation in ET
is

S(ET) = S(ET)(E). (4)

We call hereafter the quantity S(ET) an ET-entropy and the function S(ET)(E) an “ET” fundamental thermody-
namic relation.

The Legendre transformation S∗(ET)(E∗) of S(ET)(E) is obtained as follows. First, we introduce the “ET”
thermodynamic potential

Φ(ET)(E,E∗) = −S(ET)(E) + E∗E. (5)

Next, we find E at which Φ(ET) reaches its minimum (i. e., we solve Φ(ET)E = àΦ(ET)àE = 0), and we denote it
E(ET)(E∗). Finally, S∗(ET)(E∗) = [Φ(ET)(E,E∗)]E=E(ET) .

We now ask the question of what could be the time evolution of E for which E → E(ET) as t → ∞. With
such time evolution, the Legendre transformation described above is made simply by following the evolution
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to its conclusion. But on the equilibrium level there is no time evolution. In isolated systems the energy E,
that is, the only state variable on the level “ET,” does not change in time. On the more microscopic levels
that we shall discuss in next sections the time evolution does take place even when E remains constant. The
Legendre transformations that will arise in the next sections will indeed be made by following appropriate
time evolutions. From the physical point of view, the time evolutions will describe the process of preparing
the systems for using the equilibrium level or more generally a level that involves fewer details. When we
are already on the equilibrium level, as is the case in this section, we have no details to lose. The energy E,
that is, the only state variable, remains constant. No time evolution takes place. In order to see the Legendre
transformation S(ET)(E)→ S∗(ET)(E∗) as a result of a time evolution, we have to open our system and we have
to let it interact with a thermal bath of the temperature T = 1

E∗ . From the physical point of view, the time evo-
lution that we are looking for will describe the equilibration process bringing our system to equilibrium with
the thermal bath. The simplest equation governing such time evolution (and thus also making the Legendre
transformation S(ET)(E)→ S∗(ET)(E∗)) is

Ė = −Λ(ET)Φ(ET)E , (6)

where the dot denotes the time derivative, Φ(ET)E = àΦ(ET)àE , and Λ(ET) > 0 is a parameter. The Lyapunov theorem
(Φ(ET) serves as the Lyapunov function) implies that E → E(ET) as t → ∞, where E(ET)(E∗) is the energy E at
which Φ(ET) reaches its minimum, i. e., E(ET)(E∗) is a solution of Φ(ET)E = 0.
3 Fourier theory:m → ET
Now we turn to the Fourier theory “m.” There is only one state variable in the Fourier theory. It is the field
of the internal energy e(r); r ∈ ℝ3 is the position vector. The state space in m will be denoted by U (m) (i. e.,
e(r) ∈ U (m)).

The time evolution of e(r) (i. e., the time evolution in the reducing dynamics (1) in which the level M is
replaced by the levelm) is governed by àeàt = −∇ ⋅ (Λ(m)∇e∗). (7)

We explain the meaning of the symbols introduced in (7).
By e∗(r) we denote a state variable that is conjugate to e(r). We define it as follows. We introduce first

s(m) : U (m) → ℝ, (8)

called anm-entropy.We assume that s(m) is a sufficiently regular and concave function.We shall call s(m)(r) =
s(m)(e; r) introduced in (8) an “m” thermodynamic relation similarly as we call (4) S(ET) = S(ET)(E) an “ET”
fundamental thermodynamic relation. The conjugate state variable e∗(r) is introduced as e∗(r) = s(m)e(r), where
we use the notation e∗(r) = s(m)e(r) = δs(m)

δe(r) , with δ.../δ... an appropriate functional derivative. The symbol ∇
stands for à/àr. By Λ(m)(e(r)) we denote a positive definite operator. Hereafter, we shall use the summation
convention: ∇ ⋅ (Λ(m)∇e∗) = ài(Λ(m)ik àke∗) = ∑3i=1∑3k=1 ài(Λ(m)ik àke∗), where ài = à/àri, i = 1, 2, 3.
3.1 Properties of solutions to eq. (7)

Wemake a few observations about solutions to (7). First, we note that

Ė = 0 (9)

(where the dot means the time derivative and E = ∫ dre(r)) provided the boundary conditions are chosen
(in accordance with the assumption of the absence of external influences) in such a way that the integrals
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over the boundary equal zero. Therefore the ET level corresponding to the reduction of the Fourier m level
that is compliant with the Fourier evolution equation (7) is the fixed equilibrium E(ET) with the fundamental
thermodynamic relation S(ET) = S(ET)(E(ET)).

The second observation is about the time evolution of them-level entropy s(m). We note that

Ṡ(m) > 0n, (10)

where S(m) = ∫ drs(m)(e; r). Indeed,
Ṡ(m) = ⟨e∗, àte⟩ = −∫ dre∗∇ ⋅ (Λ(m)∇e∗) = ∫ dr(∇ϵ∗) ⋅ Λ(m)(∇e∗) ≥ 0,

due to the assumption that Λ(m) is a positive definite operator. The entropy production is thus equal to Ṡ(m)
as there is no entropy flux at the boundary assumed, and on them-level it is thus ∫ dr(∇e∗) ⋅ Λ(m) ⋅ ∇e∗ > 0.

With an introduction of an “m”-thermodynamic potential

Φ(m)(E∗) = ∫ drϕ(m)(r;E∗), (11)

where

ϕ(m)(r;E∗) = −s(m)(e; r) + E∗e(r), (12)

the above two observations (9) and (10) then imply

Φ̇(m) < 0. (13)

(i) The approach to equilibrium
The asymptotic, t →∞, solutions to (7), denoted e(ET)(r;E∗), areminima ofΦ(m) (i. e., solutions toΦ(m)e(r) =

0). Indeed, them-level thermodynamic potential Φ(m) plays the role of the Lyapunov function for the t →∞
approach to the equilibrium states e(ET)(r;E∗).1

(ii) The “ET” fundamental thermodynamic relation (4) implied by the “m” fundamental thermodynamic
relation (8)

The approach to equilibrium E(ET) from level m should be compliant with the ET description, i. e.,
Φ(m)(E∗) = Φ(ET)(E∗), where Φ(ET)(E∗) is the Legendre transformation of S(ET)(E) and similarly Φ(m)(E∗) is
the Legendre transformation of s(m)(e). Then− S(ET)(E) + E∗E|E=E(ET)(E∗) = Φ(ET)(E∗) = Φ(m)(E∗) = −∫drs(m)(e(ET)(E∗, r); r) + E∗E, (14)

and we see that E∗ introduced in (12) is the conjugate variable to E on the level ET (i. e., E∗ = SE), equi-
librium variables from the two levels satisfy the following correspondence E(ET) = E = ∫ dre(r)|e=e(ET) =∫ dre(ET)(r;E∗), and entropies are related as S(ET)(E∗) = S(m)(e(ET)(r;E∗); r) = ∫drs(m)(e(ET)(E∗, r); r).

We also note that if we choose them-entropy s(m)(e(r)) to be pointwise (in energy e) the same function as
S(ET)(E) (the so-called local equilibrium assumption), then S(ET) = S(ET)(E) is the “ET” fundamental thermo-
dynamic relation implied by the “m” fundamental thermodynamic relation.

Note also that it is possible to construct a “Lyapunov potential” Φ(e) − ⟨Φe|e0 , (e − e0)⟩ which leads to a
non-equilibrium steady state (energy density field e0); see [15].

Finally, we note that the Fourier equation (7) can also be written in the formàeàt = ∇ ⋅ (Λ(m)∇Φ(m)e ), (15)

with the “m” thermodynamic potential Φ(m) given in (12).
1 Lyapunov theory per se is not available in this generality. Although the problem of stability in (nonlinear) partial differential
equations is more complex and requires tailored analysis to a given problem, we propose to consider the existence of Lyapunov
type functional as a strong indication of stability of equilibrium point. This is supported by extensions of Lyapunov theory to
certain classes of partial differential equations [13, 14].
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3.2 Generalized Fourier theory:m → ET

Still another way to write the Fourier time evolution equation (7) isàeàt = Ψ(m)e∗(r), (16)

where Ψ(m) = 1
2 ∫ dr(∇e∗) ⋅ Λ(m) ⋅ (∇e∗). We call Ψ(m) an “m” dissipation potential.

We note that both (9) and (10) and thus also (13) remain to hold also for more general dissipation poten-
tials Ψ. The properties that guarantee (9), (10), (13) are the following: (i) Ψ(m) is a sufficiently regular function
Ψ(m) : U (m) × U (X) → ℝ, (e(r),X(m)(r)) Ü→ Ψ(m)(e,X), with X(m) = ∇e∗; (ii) Ψ(m)(e(r),0) = 0; (iii) Ψ(m) as a
function of X(m)(r) ∈ U (X) reaches its minimum at 0; and (iv) Ψ(m) as a function of X(m)(r) ∈ U (X) is a convex
function in a neighborhood of 0.

We indeed easily verify that (9) and (10) hold and thatΨ(m) = 1
2 ∫ dr(∇e∗)⋅Λ(m) ⋅(∇e∗) is a particular case of

the dissipation potential satisfying the four properties of Ψ(m) listed above. The quantity X(m) is called an “m”
dissipative thermodynamic force or just simply an “m” thermodynamic force. We note that X(m) = ∇e∗ can
also be written as X(m) = −∇Φ(m)e and that entropy production can be calculated in this generalized version
as

Ṡ(m) = ⟨e∗, àte⟩ = ⟨e∗,Ψ(m)e∗ ⟩. (17)

The generalization from (15) to (16) can be motivated by results in statistics. It was shown in [16, 17] that
a generalized gradient dynamics (dissipative dynamics generated by a dissipation potential) is implied by
the large deviation principle with the rate function (Lagrangian) dependent on the state variables and fluxes
of the state variables. Therefore, it would make sense to investigate also reduction methods working directly
with the Lagrangian instead of the implied dissipation potential. In the present work, however, we focus
directly on the dissipation potentials.

4 Cattaneo theory:M → ET
In order to extend the rangeof applicability of theFourier theory (e. g., to investigations of theheat conduction
in electronic devices) we follow Cattaneo [18] and extend the state space of the Fourier theory U (m) to a larger
state space U (M). The elements of U (M) are the fields e(r), which serve as the state variables in the Fourier
theory, and an additional vector field J(r), i. e.,(e(r), J(r)) ∈ U (M). (18)

The physical interpretation of J(r) will be revealed later in this section in the investigation of the time evolu-
tion of (18).

Similarly as in ET or in the Fourier theory, we introduce theM-entropy

s(M) : U (M) → ℝ (19)

and call s(M)(r) = s(M)(e, J ; r) an “M” fundamental thermodynamic relation. Again, keeping the notation
introduced in ET and in the Fourier theory, we introduced the conjugate state variables e∗ = s(M)e(r), J∗ = s(M)J(r)
and the “M” thermodynamic potential Φ(M) = −S(M) + E∗E, where S(M) = ∫ drs(M)(e, J ; r) and E = ∫ dre(r).

In the time evolution of the Cattaneo state variables (18), we want first of all to preserve (9) and (10) but
with S(M) replacing S(m). It is easy to verify that in the time evolution governed byààt ( e

Ji
) = ( ài ( 1(e∗)2 J∗i )

1(e∗)2 ài(e∗) ) + ( 0
Ψ(M)J∗i
) (20)

both (9) and (10) with S(M) replacing S(m) remain valid. By Ψ(M) we denote that “M” dissipation potential
satisfying the properties listed in Section 3.2 with the “M” thermodynamic force X(M) = J∗. We shall discuss
the properties of solutions to (20) in Section 4.1 and derive (20) in Section A.
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4.1 Properties of solutions to eq. (20)

The energy conservation (9) of the energy E = ∫ dre(r) is manifestly visible in (20). The “M” energy flux (i. e.,
the heat flux on theM-level denoted by the symbolQ(M)) is related to the vector field J (which serves as the
extra state variable) by

Q(M) = − 1(e∗)2 J∗. (21)

Now we turn to the entropy inequality (10) with s(m) replaced by s(M). We see immediately that às(M)àt =ài ( 1e∗ J∗i ) + J∗i Ψ(M)J∗i
. The “M” entropy flux, denoted by the symbolS(M), is thus given by

S(M) = − 1
e∗ J∗. (22)

From (21) and (22) we then see that S(M) = e∗Q(M), which is indeed the classical relation between the heat
flux and the entropy flux.

The “M” entropy production implied by (20) is given by

J∗i Ψ(M)J∗i
> 0, (23)

as change of “M” entropy iṡs(M) = e∗àte + J∗i àtJi = e∗ài ( 1(e∗)2 J∗i ) + J∗i 1(e∗)2 ài(e∗) + J∗i Ψ(M)J∗i
= ài ( 1e∗ J∗i ) + J∗i Ψ(M)J∗i

.
The inequality sign in (23) is a direct consequence of the four properties of dissipation potentials listed in
Section 3.2. Since both Ė = 0 and Ṡ(M) > 0 hold, also the inequality Φ̇(M) < 0 holds. This inequality then
implies (see more in Section 4.1.1) the approach to equilibrium and the “ET” fundamental thermodynamic
relation implied by the “M” fundamental thermodynamic relation (19). We note that the “ET” fundamental
thermodynamic relations obtained in Section 3.1 and in this section are identical if J(ET) = 0 and [s(M)]J=0 =
s(m).

In order for the Cattaneo equation (20) to be regarded as an extension of the Fourier equation (7) or (16),
we have to show that solutions to (7) approximate well asymptotic solutions to (20). If this is the case then
the macroscopic system under investigation can be prepared (by letting the time evolution to take its course
for a sufficiently long time) for them-level description. We shall investigate this question in Section 6.

Now we return to the question of what is the physical interpretation of the vector field J(r) that serves on
the level “M” as the extra state variable. We see from (21) and (22) that J(r) is related to but is not the same as
either heat flux or the entropy flux. The relation involves the fundamental thermodynamic relation (19). More
information about the physical interpretation of J(r) will arise in Section A, where we discuss the derivation
of (20).

4.1.1 Rigorous derivation of the approach to ET : Open problem

In the context of the Fourier equations (7) and (16) (considered together with the boundary conditions ex-
pressing the absence of external forces), the entropy production disappears (i. e., Φ̇(m) = −Ṡ(m) = 0 due to
energy conservation Ė(m) = 0 and as entropy production corresponds to the whole time derivative of entropy
S(m) due to zero entropy flux) only at the equilibrium sates (i. e., the states at which the thermodynamic po-
tential Φ(m) reaches its minimum). This then makes a strong indication of the approach to equilibrium via
Lyapunov theory as discussed above. The situation is different in the context of the Cattaneo equation (20).
The entropy production disappears (i. e., Φ̇(M) = −Ṡ(M) = 0 again due to conservation of total energy and
because the system is assumed closed resulting in zero total entropy flux; finally note that a total entropy
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8 | M. Grmela et al., Entropy and Entropy Production in Multiscale Dynamics

production rather than local is considered) on themanifold {(e, J) ∈ U (M)|J∗ = 0}while the equilibrium states
form a smaller submanifold {(e, J) ∈ U (M)|J∗ = 0, e∗ = E∗}. It is the mutual interaction of the dissipative (gov-
erned by the second term on the right-hand side of (20)) and the nondissipative (governed by the first term
on the right-hand side of (20)) time evolutions that is expected to drive solutions to the Cattaneo equation to
the equilibrium states, i. e., vanishing entropy production is not providing a characterization of equilibrium.
A similar situation arises in the context of the Boltzmann kinetic equation where the entropy production
disappears at the local Maxwell distribution functions and the equilibrium states are the total Maxwell dis-
tribution functions that are a small submanifold of the manifold formed by the local Maxwell distribution
functions. An interesting open problem is to adapt the rigorous proof [19] of the approach to equilibrium for
the Boltzmann equation to the Cattaneo equation (20).

5 M → m

The Fourier theory represented by (7), (15), and (16) addresses systems that are allowed to approach equilib-
rium. We can however also include into the Fourier theory systems that, due to the presence of external and
internal constraints, are prevented from approaching equilibrium and thus from preparing them for ET level
of description. We shall denote the external and internal influences preventing the approach to ET by the
symbol P. If we still limit ourselves only to the processes that preserve the energy, the equation replacing (7)
and (15) will take the form àeàt = −àiJi, (24)

where the energy flux J remains unspecified. Its specification J = J CR(e(r),P), where P are internal con-
straints, will be called (in accordance with the established terminology) constitutive relation (CR).

We now assume that a comparison of results of experimental observations with solutions to eq. (24) (that
is equipped with an appropriate CR J = J CR(e,P)) shows an agreement. This then means that any other
well-established description that is more microscopic (more detailed) than the one provided by (24) has to
show an approach to (24).

The next question is which more microscopic theory (more microscopic levelM) we choose. In the illus-
tration discussed in this paper we choose a theory in which a flux ϒ(r) plays the role of the state variable. The
simplest time evolution equation for ϒ describing the approach to J CR as t →∞ is a direct adaptation of the
Fourier equation (15) to the state variable ϒ, i. e.,àϒiàt = −Λ(Mm)

ik Φ(Mm)
ϒi
, (25)

where

Φ(Mm)(ϒ; JCR) = −S(Mm)(ϒ) + JCRj Jj(ϒ) (26)

is an “Mm” thermodynamic potential, Λ(Mm) is a positive definite operator. The specification of both the en-
tropy S(Mm) that is associated with theM → m time evolution (we call it, in accordance with the terminology
used in the previous sections, an “Mm” entropy) and J(ϒ) = J must come from physical considerations in
which new experimental observations of heat transfer (observations that are more detailed than those on
which the Fourier theory is based) and associated with them new physical insight are expressed in terms of
the state variable ϒ. The vector J(CR) is related to the constitutive relations J CR by (27) below.

We shall see in the next section that for externally unforced systems that are allowed to reach the equi-
librium level “ET,” such more microscopic viewpoint can be the viewpoint offered by the Cattaneo theory. If
we make this choice, then we can see the physical meaning of ϒ and identify the functions S(Mm) and J (JCR).
At this point we leave both S(Mm)(ϒ) and J (ϒ) unspecified.
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Now, we investigate solutions to (25). Since we assume that Φ(Mm) is a convex function of ϒ and Φ̇(Mm) =−∫ drΦ(Mm)
ϒi

Λ(Mm)
ik Φ(Mm)

ϒk
< 0, the Lyapunov theory implies that ϒ → ϒ(m)(JCR) as t → ∞, where ϒ(m)(JCR) is a

solution to Φ(Mm)
ϒ = 0.

The passage ϒ→ ϒ(m),made by following the time evolution governed by (25), can also be seen as a result
of the reducing Legendre transformation S(Mm)(ϒ) → S†(m)(JCR), where S†(m)(JCR) = [Φ(Mm)(ϒ; JCR)]ϒ=ϒ(m)(JCR).
Indeed, making the Legendre transformation of S(Mm)(ϒ)means to find the minimum of the thermodynamic
potential (26). Note that Φ(Mm) reaches its minimum at ϒ(m).

Consequently, we arrive at

J CR = J(ϒ(m)) = S†(m)JCR , (27)

relating J(CR) introduced in (26) to constitutive relations in (24). After the time evolution making the passage
M → m (i. e., the time evolution governed by (25)) has been completed, the time evolution on the level “m” is
governed by àeàt = −ài (S†(m)JCRi

) . (28)

The relation (27) between the constitutive relations JCR and the quantities S(Mm)(ϒ), J(ϒ) appearing in (25)
become more explicit if we choose JCRi = àie∗. With this choice, eq. (28) takes the formàeàt = S†(m)e∗ (29)

and thus, if we compare it with (16), we arrive at S†(m)(e∗) = Ψ(m)(e∗).
The most important result of this section is the “m” level entropy S†(m)(JCR(e∗)). We recall that we have

obtained this potential on the level “m” from the assumption that the “m” level iswell established (i. e., results
of “m” level experimental observations agree with predictions made on the “m” level). This assumption then
implies that in the context of another well-established level “M,” that ismoremicroscopic than the level “m,”
we have to be able to see an approach to the level “m.” If we assume that this approach is governed by (25),
then we arrive at the potential S†(m)(JCR(e∗)) on the level “m.”

If the system under investigation is closed (i. e., the system eventually reaches the level “ET”), then we
have on the level “m” two entropies: S(m)(e) and S†(m)(JCR(e∗)). The former is generating entropy driving the
passage m → ET and the latter is the entropy that arises from the passage M → m. In the next section, we
shall investigate their relation in the context of the Cattaneo theory addressing the passageM → ET.

If the system under investigation is open (i. e., external influences prevent the approach to the thermody-
namic equilibrium), then the generating entropy S(m)(e) does not exist, but the target entropy S†(m)(JCR(e∗))
still exists. The appearance of two entropies on the level “m,” one from the passage M → m (the target en-
tropy) and the other from the passagem→ ET (the generating entropy), is the main result of this paper.

6 M → m → ET
In this section we consider closed systems and compare the passageM → ET to the passageM → m → ET.
The time evolution ensuring the former passage is governed by (20) and the time evolution ensuring the latter
passage is a sequence of two time evolutions, of which the first, fast, is governed by (25) and the second, slow,
which follows after the fast one, is governed by (24) (or (16)). The objective is to relate the quantities entering
theCattaneo equations (20) to thequantities entering the fast (25) and the slow (24) (or (16)) Fourier equations.
We have already seen in the previous section relations between the quantities entering the fast (25) and the
slow (24) (or (16)) Fourier equations. We shall include now in our investigation also the Cattaneo equations.

The problem that we face is to investigate solutions to (20). Our objective is to show that solutions to (20)
can be well approximated by solutions to (25) followed by solutions to (24) with appropriate relations among
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10 | M. Grmela et al., Entropy and Entropy Production in Multiscale Dynamics

the quantities entering these equations. In order to analyze asymptotic solutions to (20) we note its formal
similarity to the Hamilton equations in particle mechanics. The first equation corresponds to ̇r = p∗, and
the second corresponds to ṗ = −r∗ − λp∗, where r is the position vector, p is the momentum, (r∗, p∗) are the
conjugate variables, and λp∗, λ > 0, represents the friction. In this context, we know that if the mass m of
the particle (that is involved in the relation between p and p∗) is sufficiently small and λ (that is involved in
the friction) is sufficiently large, then p evolves faster than r. After some time, p settles at (or in the vicinity
of) the quasi-equilibrium manifold determined by r∗ − λp∗ = 0. The time evolution then continues on the
quasi-equilibrium manifold and is governed by the inertialess dynamics ̇r = − 1λ r∗.

Analogically in the context of (20), with an appropriate choice of s(M) (determining the relation between
the variables and their conjugates) andΨ(M) (determining the dissipation), J evolves in time faster than e and
consequently, at the later stage of the time evolution J relaxes to a constant, àJ/àt is small, and the second
equation in (20) reduces to

1(e∗)2 ài(e∗) +Ψ(M)J∗i
= 0. (30)

Wenote thatwith the samechoice of s(M) andΨ(M) andat the same stage of the time evolution, the second term
on the right-hand side of the Poisson bracket (46) will be smaller than the first term. Indeed, the governing
equations implied by the Poisson bracket (46) areààt ( e

Ji
) = ( ài ( 1(e∗)2 J∗i )

1(e∗)2 ài(e∗) ) − 1
s(M) (àiJj − àjJi)(( J∗ie∗ )2J∗i

e∗
) + ( 0

Ψ(M)J∗i
) ,

where the boxed terms are contributions from the second term of the Poisson bracket. One can see that near
the “m” level (Fourier manifold), where Ji is a constant (MaxEnt value of J in the transition M → m while
again assuming no outer or inner effects are considered), we may assume derivatives of J to be subleading to
the other contributions, justifying their omission above. In the one-dimensional setting, moreover, the terms
are exactly equal to zero. Similarly, time evolution of the flux J near the Fouriermanifold iswell approximated
by the algebraic constraint (30).

Summing up, the above considerations imply that (with an appropriate choice of s(M) and Ψ(M) and lim-
iting ourselves to only the later stage of the time evolution) the time evolution governed by (20) proceeds in
two stages.

In the first (fast) stage the state variables approach the vicinity of the quasi-equilibrium manifold deter-
mined by (30). The time evolution in this stage (describing the approach M → m) is governed by (25) with
ϒ = J∗, the CR J CR

i = − 1(e∗)2 àie∗, and
S(Mm) = Ψ(M). (31)

These relations follow from M → ET and their choices can be verified from the fast (reducing) evolution
equation, which then readṡJ∗i = àδs(M)/δJiàt = δ2s

δJiδJj
̇Jj = s(M)JiJj

δ
δJj
(Ψ(M) + ∫dr( 1(e∗)2 àie∗) J∗i ) , (32)

while ̇J∗i = ϒ̇i = −Λ(Mm)
ij Φ(Mm)

J∗j
and Λ(Mm)

ij = −s(M)JiJj
is a symmetric positive definite operator (due to concavity of

entropy). Therefore

Φ(Mm) = −Ψ(M) + ∫dr(− 1(e∗)2 àie∗) J∗i (33)

plays the role of thermodynamic potential and theM force satisfies X(M)i = − 1(e∗)2 àie∗ = ài 1e∗ in contrast to the
m force X(m)i = àie∗; see Section 3.2.
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In the second stage the time evolution is governed by (16) with Ψ(m) that we aim to identify by a relation
to Ψ∗(M), if possible. Let us explore the simplest and most natural case,

Ψ(M) = ∫dr 1
2
λJ∗ ⋅ J∗,

and thus Ψ∗(M) = ∫dr 12 1
λX
(M) ⋅ X(M), where Ψ∗(M) is the dissipation potential conjugate to Ψ(M) via Legendre

transformation

0 = δ
δJ∗ (−Ψ(M) + X(M) ⋅ J∗) !!!!!!J∗=J∗(X(M)) and Ψ∗(M) = −Ψ(M) (J∗) + X(M) ⋅ J∗!!!!!!J∗=J∗(X(M)). (34a)

The inverse transformation reads

0 = δ
δX(M) (−Ψ∗(M) + X(M) ⋅ J∗) !!!!!!X(M)=X(M)(J∗) and Ψ(M) = −Ψ∗(M) (X(M)) + X(M) ⋅ J∗!!!!!!X(M)=X(M)(J∗). (34b)

Note that the conjugate dissipation potential Ψ∗(M) is exactly the thermodynamic potential Φ(Mm).
Further, solutions to (30) are

J∗i = [Ψ∗(M)X(M)i
]
X(M)i =− 1

(e∗)2
àie∗ , (35)

and hence the evolution equation for energy density in eq. (20) becomesàte = ài ( 1(e∗)2Ψ∗(M)X(M)i

!!!!!!X(M)=∇ 1
e∗
) , (36)

guaranteeing energy conservation.
Let us now find a relation between the two entropies S(Mm) and S(m) on the Fourier m level, i. e., in the

situation at which the second equation in (20) reduces to its equilibrium form (30) we also replace the s(M)e
with s(m)e (i. e., e∗ on the “M” level is the same as e∗ on the “m” level) in accordance with MaxEnt reduction
[20]. On the one hand entropy connecting the Cattaneo and Fourier levels satisfies

S(Mm)|X(M)=∇ 1
e∗
= Ψ(M)|X(M)=∇ 1

e∗
= ∫dr 1

2
λJ∗ ⋅ J∗ = ∫dr 1

2
X(M) ⋅ J∗ = ∫dr [ 1

2
X(M)i Ψ∗(M)

X(M)i
]
X(M)=∇ 1

e∗

> 0,
as X(M)(J∗) = λJ∗, which follows from the Legendre transformation mentioned above, and using eq. (35). On
the other hand, entropy production linked with the evolution from Fourier level to equilibrium satisfies

Ṡ(m) = ⟨e∗, àte⟩ = ∫dre∗ài ( 1(e∗)2Ψ∗(M)X(M)i

!!!!!!X(M)=∇ 1
e∗
) = ∫dr − (àie∗) 1(e∗)2Ψ∗(M)X(M)i

!!!!!!X(M)=∇ 1
e∗= ∫dr [X(M)i Ψ∗(M)

X(M)i
]
X(M)=∇ 1

e∗

= 2S(Mm) > 0. (37)

Note that entropy inequality is thus satisfied but, more importantly, we have shown that in systems that are
not prevented from reaching equilibrium, the entropy that arises in the investigation of the passageM → m
is a quantity directly related to the production of the entropy that arises in the investigation of the passage
m→ ET.

Further, theMm-entropy S(Mm) that arises in the analysis of the passageM → m becomes directly related
to the “m” dissipation potential Ψ(m) that arises in the analysis of the passagem → ET. The relation is given
by (31) and (37). However, note that such a relation is quite complicated and finally note that one cannot use
projections via MaxEnt to obtain the dissipation potential Ψ(m) on the lower level from the upper level Ψ(M)
or Ψ∗(M). Indeed if one would use such a relation via projection, i. e.,

Ψ(m) = [Ψ∗(M)(X(M))]X(M)i =− 1
(e∗)2
àie∗ ,

one would not obtain the evolution of energy on the Fourierm level, as a direct calculation reveals.
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7 Extended Cattaneo levelM

It was shown for instance in [11] that good agreement with experiments is obtained when working with not
only the J field (CattaneoM level), but also with an additional tensor field Q coupled to the J field. The level
with (e, J ,Q) (or alternatively (s, J ,Q)) involves thusmore details than the levels “M” and “m.”We shall denote
it by the symbolM and call it an extended Cattaneo level. Below, we shall investigate the passagesM→ ET
andM→ M.

Let us now show how to derive the equations using CR-thermodynamics [10]. A natural CR-extension
of the Cattaneo M-level is the extended Cattaneo level M with state variables (s, J ,Q), Q being a symmetric
tensor field. The Poisson bracket is an extension of bracket (46) (disregarding the higher-order terms in that
bracket as above), {A,B} = ∫dr (àkAs(M)BJk − àkBs(M)AJk )+ ∫dr ((àjAJi + àiAJj)BQij

− (àjBJi + àiBJj)AQij
) . (38)

Note that one can also proceed in the spirit of the original Guyer–Krumhansl works [21] from the level of
kinetic theory of phonons. For instance, two particle kinetic theory or Grad hierarchy for phonons leads to
additional state variables coupled to the heat flux; see [12]. The reversible evolution equations implied by the
Poisson bracket (38) are àts = −àiEJi , (39a)àtJi = −àiEs − àjEQij

− àjEQji
, (39b)àtQij = −àjEJi − àiEJj . (39c)

Transformation from this energetic representation to the entropic representation turns the evolution equa-
tions to àeàt = ài ( 1(e∗)2 J∗i ) − ài ( J∗j Q∗ij(e∗)2) − àj ( J∗i Q∗ji(e∗)2) , (40a)àJiàt = 1(e∗)2 ài(e∗) + àjQ∗ije∗ + àjQ∗jie∗ , (40b)àQijàt = àj J∗ie∗ + ài J∗je∗ , (40c)

where the conjugate variables e∗, J∗, andQ∗ can be interpreted as derivatives of an S(EC) entropy living on the
EC level. Note that the relation between heat flux (flux of energy) and entropy flux becomes more complex in
the presence of the extra variable Q.

Dissipation is included through a dissipation potential on the EC level Ψ(EC)(J∗,Q∗), and the evolution
equations become àeàt = ài ( 1(e∗)2 J∗i ) − ài ( J∗j Q∗ij(e∗)2) − àj ( J∗i Q∗ji(e∗)2) , (41a)àJiàt = 1(e∗)2 ài(e∗) + àjQ∗ije∗ + àjQ∗jie∗ +Ψ(EC)J∗i

, (41b)àQijàt = àj J∗ie∗ + ài J∗je∗ +Ψ(EC)Q∗ij
. (41c)

The choice

Ψ(EC)(J∗,Q∗) = ∫dr 1
2
λ(J∗)2 + ∫dr 1

2
αQ∗ijQ∗ij (42)
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makes the evolution equations explicit (up to the specification of entropy), i. e.,àeàt = ài ( 1(e∗)2 J∗i ) − ài ( J∗j Q∗ij(e∗)2) − àj ( J∗i Q∗ji(e∗)2) , (43a)àJiàt = 1(e∗)2 ài(e∗) + àjQ∗ije∗ + àjQ∗jie∗ + λJ∗i , (43b)àQijàt = àj J∗ie∗ + ài J∗je∗ + αQ∗ij . (43c)

These equations are comparable with equations (16) of the paper [11].
Nowwe proceed to the passageM→ M. The evolution equation for theQ field in eqs. (43) can be seen as

the reducing evolution when assuming fast relaxation of Q and leading (after the relaxation) to the equation

0 = àj J∗ie∗ + ài J∗je∗ + αQ∗ij , (44)

which is a constitutive relation forQ∗ in the evolution equation for J. After plugging this constitutive relation
into the evolution equation for J we obtain

àeàt = ài ( 1(e∗)2 J∗i ) + ài ( J∗j(e∗)2 2α (ài J∗je∗ + àj J∗ie∗)) , (45a)àJiàt = 1(e∗)2 ài(e∗) − àj ( 2
αe∗ (àj J∗ie∗ + ài J∗je∗)) + λJ∗i , (45b)

which can be interpreted as the Guyer–Krumhansl equation; see, e. g., [21–23], when dropping nonlinear
terms (see also Section B).

One can again compare entropy production on the Cattaneo level with the potential driving the reducing
evolution from the extended Cattaneo level to Cattaneo. The latter at the Cattaneo level (using constitutive
relation (44)) is

Ψ(EC) = ∫dr 1
2
λ(J∗)2 + 1

α
[àj J∗ie∗ + ài J∗je∗ ][àj J∗ie∗ + ài J∗je∗ ] ,

while the former reads

Ṡ(C) = ⟨e∗, àte⟩ + ⟨J∗, àtJ∗⟩ = div(J∗i /e∗) +Ψ(EC),
as direct calculation reveals.

In summary, another extension of the Cattaneo level by adding an extra tensor fieldQ leads to a nonlinear
generalization of equations that have been shown to be in good agreement with flash experimental data. By
reduction of the fast evolutionwe obtain a generalization of the Guyer–Krumhansl equations. Again as above
in the transition from the Cattaneo to the Fourier level, the reducing evolution is governed by an entropy-
production-like quantity from the reduced level.

8 Conclusion
Emergence of various entropies in the analysis of the time evolution of both externally unforced and driven
systems has already been discussed in [10], [24]. In this paper we have worked out a simple illustration. A
systematic investigation of relations among the heat conduction theories formulated on four levels, namely,
the equilibrium “ET”, the Fourier “m”, the Cattaneo “M,” and the extended CattaneoM levels, led us to nine
entropies, three on “ET”, two on “m,” two on “M,” and two onM. Let us now discuss entropies pertinent for
the ET,m, andM levels (as theM level would be analogical).
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8.1 ET -entropies

The first ET-entropy, introduced in (4), arises as a result of experimental observations (listed in Thermody-
namic Tables). The second and the third ET-entropies arise in Sections 3 and 4 in the analysis of solutions to
the Fourier and the Cattaneo heat conduction equations. Their origin is thus dynamical. It is the process that
is needed to prepare the systems to the ET-level that is giving rise to the ET-entropies.

8.2 m-entropies; the main result

The firstm-entropy arises in Section 3 as a potential generating the preparation process for using the equilib-
rium level of description. This entropy therefore does not exist if the system under consideration is prevented
from reaching the thermodynamic equilibrium. The secondm-entropy, which arises in Section 5 in the anal-
ysis of the passage from the Cattaneo to the Fourier description of the heat conduction, however, exists also
in the presence of external forces and external and internal constraints preventing the approach to the ther-
modynamic equilibrium. The second m-entropy thus provides thermodynamics also to systems for which the
classical ET does not exist. If the approach to equilibrium is permitted, then bothm-entropies exist and the latter
(i.e, the one associated with the passage M → m) turns out to be production of the former (i. e., the one asso-
ciated with the passage m → ET). The m-entropy that arises in the passage M → m can therefore be called
an entropy production but such terminology is confusing since such entropy production does not have to be
production of any entropy (as is indeed the casewhen the approach to equilibriumdoes not exist and thus the
classical entropy does not exist). We therefore suggest to call the entropy that arises in the analysis ofM → m
a CR-entropy, i. e., the entropy determining the CRs. The realization that the classical entropies and the CR-
entropies have very different origins brings also a clarification to discussions about the maximum-entropy
and the maximum-entropy production principles (for example in their use in determining the constitutive
relations in fluid mechanics of complex fluids [25, 26]).

Note that we showed that vanishing of entropy production does not characterize the equilibrium fully (in
Section 4.1.1).

8.3 M-entropies

There are two M-entropies, one arising in the analysis of M → ET and the other in the analysis of M → m.
We note that the transformation of the M-entropy corresponding to the passage M → ET to the resulting
ET-entropy, which is made by following the time evolution on the level “M” to its conclusion, is also a reduc-
ing Legendre transformation. This is true also for the transformation from them-entropy to the corresponding
ET-entropy in the analysis of m → ET and the transformation from theMm-entropy to the m-entropy in the
passageM → m.
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Appendix A. Derivation of the Cattaneo equation (20)

Both the Fourier (7) and the Cattaneo (20) time evolution equations have beenderived in the previous sections
by investigating their consequences. We have first proposed the equations and then we have shown that they
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both generate the time evolution describing the approach to equilibrium at which the classical ET applies.
In addition, in Section 6, we have also shown that solutions to (20) agree with solutions to (7) provided the
parameters entering (20) and the initial condition are chosen appropriately. Now, we turn to the derivation
of (20) that begins with some fundamental principles and eq. (20) arises from an investigation of their con-
sequences. The fundamental principles can be found either in the very microscopic (atomistic) viewpoint of
heat or in some general considerations about the mathematical structure of mesoscopic theories. We shall
now derive (20) from the principles that have arisen on the latter route.

As argued in [9, 12, 27, 28], the mesoscopic time evolution equations describing the approach to equilib-
rium all have a general structure called GENERIC. The vector field generating the mesoscopic time evolution
(i. e., the right-hand side of the time evolution equation) is a sum of two parts, one (being a remnant of the
Hamiltonian dynamics of the fundamental particles composing themacroscopic system under investigation)
is Hamiltonian, and the other (driving the system to the thermodynamic equilibrium) is gradient. We now
proceed to recognize the GENERIC structure in (20).

The second term on the right-hand side of (20) represents a general gradient dynamics. The requirement
of the GENERIC structure thus does not bring anything new to the second term on the right-hand side of (20).
The different situation is however with the first term on the right-hand side of (20). According to GENERIC,
this term has to be Hamiltonian with the energy E = ∫ dre(r) serving as the generating potential and the
entropy S(M) = ∫ drs(M)(r) playing the role of the Casimir potential (i. e., a potential that is different from the
energy but, as the energy, remains unchanged during the Hamiltonian time evolution). We recall that the
Hamiltonian vector field is a covector field (that is, the gradient of the energy E) transformed into a vector
field by a Poisson bivector L. The Poisson bivector is then expressed mathematically in the Poisson bracket{A,B} = ∫ dr(Ae,AJ )TL(Be,BJ ), where A and B are real-valued and sufficiently regular functions of (e(r), J(r)),
and the vector (Ae,AJ )T is the transpose of the vector (Ae,AJ ). A bivector L is a Poisson bivector if the bracket{A,B} is the Poisson bracket (i. e., {A,B} = −{B,A} and the Jacobi identity {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0
holds). With the Poisson bracket {A,B}we can write the Hamiltonian time evolution as Ȧ = {A,E},∀A and the
Casimir potential C as the potential for which {A,C} = 0,∀A.

We now proceed to show that the first term on the right-hand side of (20) is Hamiltonian. To construct
a Hamiltonian vector field we need a potential (that has the physical interpretation of the energy E) and a
Poisson bivector L (that has the physical interpretation of kinematics). Having chosen the state variables(e(r), J(r)), the energy is given by E = ∫ dre(r) (i. e., the gradient of the energy is (Ee(r),EJ(r)) = (1,0)). It
remains thus to identify the Poisson bivector L expressing kinematics of the state variables (e(r), J(r)). To
find it, we turn to the physical origin of heat.

We begin with seeing the heat as a gas of phonons. Since we require that the entropy S(M) is the Casimir,
it is useful to start the search for kinematics of the state variables (s(M)(r), J(r)) rather than the state variables(e(r), J(r)). The relation between (e(r), J(r)) and (s(M)(r), J(r)) is given by J(r) = J(r) and the “M” fundamental
thermodynamic relation (19). We shall assume that the relation between (e(r), J(r)) and (s(M)(r), J(r)) is one-
to-one. This assumption restricts the choice of the “M” fundamental thermodynamic relations. The restriction
is in fact a weak version of the local equilibrium assumption. Indeed, if we interpret e∗(r) as an inverse of the
local absolute temperature, then e∗(r) > 0 and the transformation (e(r), J(r)) �¯ (s(M)(r), J(r)) is one-to-one.

The Poisson bracket expressing kinematics of (s(M)(r), J(r)), where the field J(r) has the physical inter-
pretation of the phonon momentum divided by s(M), is given by{A,B} = ∫ dr(àkAs(M)BJk − àkBs(M)AJk ) + ∫ dr 1

s(M) (àiJj − àjJi)AJiBJj . (46)

This has been shown in Section 3.9 of [12]. We then directly verify that the bracket obtained by transform-
ing the first term on the right-hand side of (46) from the state variables (s(M)(r), J(r)) to the state variables(e(r), J(r)) (we recall that we are assuming that the transformation is one-to-one) implies (by using Ȧ ={A,E},∀A) the time evolution governed by (20) (without the second term on its right-hand side). As for the
second term on the right-hand side of (46), we have shown in Section 6 that if we limit ourselves to states
that are not too far from states at which the time evolution is governed by the Fourier equation (7), then the
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second term is negligible, which is also the setting of the Symmetric Hyperbolic Thermodynamically Com-
patible (SHTC) or Godunov–Peshkov–Romenski (GPR) equations [29, 30], developed by the Godunov school
of thermodynamics.

Summing up, we have shown that (20) possesses a GENERIC structure, with the vector field J(r) having
the physical interpretation of the phononmomentum divided by entropy, providedwe limit our investigation
to the stage in the time evolution in which solutions to the Fourier equation (7) provide a good approximation
to solutions to the Cattaneo equation (20).

An alternative investigation of the kinematics of (e(r), J(r)) can be based on the analogy between the
time evolution of the mass density and the mass flux and the time evolution of the energy density and the
energy flux. This analogy has already beennoted and exploited in three different and apparently independent
investigations. In [31], it was an attempt to develop a Lagrangian formulation of the Cattaneo hydrodynamics,
in [32], it was the formulation of the thermo-mass viewpoint of heat, and in [33], it was an investigation of
the Grad hierarchy (the distinction made between the material F-fields and the caloric G-fields). In this paper
we mention only some results. Instead of starting with the Poisson bracket (46), we start with the standard
mass-momentum Poisson bracket [12, 34]{A,B} = ∫ dr [ ̂Ji (àj(A ̂Ji )B ̂Jj − àj(B ̂Ji )A ̂Jj)+s(M) (ài(As(M) )B ̂Ji − ài(Bs(M) )A ̂Ji)] , (47)

where the field s(M) replaces the mass density and ̂J the momentum density related to the above vector field
J through ̂J = s(M)J. Brackets (47) and (46) are equivalent (being transformations of each other).

Appendix B. Dynamic MaxEnt reduction of extended Cattaneo
Equations (39), which express reversible evolution on the extended Cattaneo level of description, can be
equipped with dissipative terms also in the energetic representation, i. e.,àts = −àiJ†i + 1

τJ
(J†)2
s† + 1

τQ
(Q†)2
s† , (48a)àtJi = −àis† − àjQ†ij − àjQ†ji − 1
τJ
J†i , (48b)àtQij = −àjJ†i − àiJ†j − 1

τQ
Q†ij, (48c)

where x† stands for derivative of energy with respect to x andwhere τJ and τQ represent relaxation times. The
equations for J and forQ contain dissipative terms and the equation for entropy contains entropy production.
This dissipation can be seen as gradient dynamics in entropic representation, as shown in [30].

We will, however, proceed in the energetic representation in this section. When the energy is quadratic
inQ, theMaxEnt value of theQ field is zero. The equation forQ at this MaxEntmanifold becomes an equation
for Q†,

0 = −àjJ†i − àiJ†j − 1
τQ

Q†ij. (49)

Plugging the solution to this equation (constitutive relation) into the remaining equations leads toàts = −àiJ†i + 1
τJ
(J†)2
s† + τQ (∇J† + (∇J†)T )2s† , (50a)àtJi = −àis† + 2τQàj (àiJ†j + àjJ†i ) − 1

τJ
J†i . (50b)

The former equation is the entropy balance while the latter is the Guyer–Krumhansl equation (assuming τQ
constant and proportionality between J and J†) [21]. The procedure just carried out is called Dynamic MaxEnt
Reduction [12], and can be seen as equivalent to the CR-thermodynamic reduction presented above.
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